After All, There Are Some Inequalities Which Are Provable in ZFC

نویسندگان

  • Tomek Bartoszynski
  • Andrzej Roslanowski
  • Saharon Shelah
چکیده

We address ZFC inequalities between some cardinal invariants of the continuum, which turned to be true in spite of strong expectations given by [10].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localizing the axioms

We examine what happens if we replace ZFC with a localistic/relativistic system, LZFC, whose central new axiom, denoted by Loc(ZFC), says that every set belongs to a transitive model of ZFC. LZFC consists of Loc(ZFC) plus some elementary axioms forming Basic Set Theory (BST). Some theoretical reasons for this shift of view are given. All Π2 consequences of ZFC are provable in LZFC. LZFC strongl...

متن کامل

Incompleteness Theorems, Large Cardinals, and Automata over Finite Words

We prove that there exist some 1-counter Büchi automata An for which some elementary properties are independent of theories like Tn =: ZFC + “There exist (at least) n inaccessible cardinals”, for integers n ≥ 1. In particular, if Tn is consistent, then “L(An) is Borel”, “L(An) is arithmetical”, “L(An) is ω-regular”, “L(An) is deterministic”, and “L(An) is unambiguous” are provable from ZFC + “T...

متن کامل

The Modal Logic of Forcing

A set theoretical assertion ψ is forceable or possible, written ♦ψ, if ψ holds in some forcing extension, and necessary, written ψ, if ψ holds in all forcing extensions. In this forcing interpretation of modal logic, we establish that if ZFC is consistent, then the ZFC-provable principles of forcing are exactly those in the modal theory S4.2.

متن کامل

Incompleteness: A Personal Perspective

After proving the completeness of the system of predicate logic in his doctoral dissertation (1929), Gödel has continued the investigation of the completeness problem for more comprehensive formal systems, especially for systems encompassing all known methods of mathematical proof. In 1931 (see [28, 25]) Gödel proved his famous (first) incompleteness theorem, which in modern terms reads: Every ...

متن کامل

A synthetic axiomatization of Map Theory

This paper presents a substantially simplified axiomatization of Map Theory and proves the consistency of this axiomatization in ZFC under the assumption that there exists an inaccessible ordinal. Map Theory axiomatizes lambda calculus plus Hilbert’s epsilon operator. All theorems of ZFC set theory including the axiom of foundation are provable in Map Theory, and if one omits Hilbert’s epsilon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Symb. Log.

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2000